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Abstract oo

We introduce the Kumaraswamy alpha power-G (KuAP-G) family \#hich extends the
alpha power transform class (Mahdavi and Kundu, 2015) and some other families.. We
consider the Weibull as 'baselir_lg for the KuAP family and generate Kumaraswamy
alpha power Weibull distribution which has symmetrical, right-skewed, left-skewed
and reversed-J shaped densities, and decreasing, increasing, bathtub, upside-down
bathtub, J shaped and reversed-J shapad ‘hazard rates. The importance of the new
distribution comes from its ability to model monotone and non-monotone failure rate
functiops, which are quite common in reliability studies. We derive some: basic
properties of the new. The maximum likelibood estimation method is used to evaluate
the parameters and the observed information metrix is determined. We illustrate the
performance of the proposed family of distributions by means of two real data sets.
Keywords: Alpha Power family, Kumaraswamy family; Meximum likelihood
estimation; Weibull distribution.

Introduction
Recently, Mahdavi and Kundu (2015) proposed a new class of distributions called the |
alpha power transformation (APT) family. For any baseline cumulative distribution
function (CDF) G(x), Mahdavi and Kundn (2015) defined the CDF of the APT
family (for x € R) by
|
Hypp(2)= Ta-1
Glx) ifa=l

if >0 #1 . )

and the corresponding probability density function (PDF) as
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a(x) if =1
In this paper, we define and study a new family of distributions with three extra shape
parameters to provide more flexibility to thg generated class. In fact, based on the
Kumaraswamy-G (K-G) family proposed by Cordeiro and de Castro (2011), we
construct a new class called the Kumaraswamy alpha power-G (KuAP-G) family and
provide a comprehensive description of some of its mathematical properties. We hope
that the new model will attract wider applications in reliability, engineering and other °

areas of rescarch.

Consider the CDF and PDF of a given random varisble namely G(x) and g(x). Then,
the CDFand PDF of the K-G family are, respectively, given by

F)=1—[1-G®)%, a,b>0 @)
and - | o
f (x) = abg(x)G (x)““1[1 G(.vc)“]"‘1 ab>0. R ('4) _'

Afify et al. (2017) considérsd the complementary Weibull geometric dlstnbutlon as a
baseline distribution in (3) and introduced the Kumaraswamy complementary Weibnll
geometric distribution. Afify et al. {2016a) introduced a new smethod for generating
distributions based on the K-G family calied the Kumaraswarey transmuted-G family,

We define a new KuAP-G family by taking the APT CDF (1) as the baseline CDF in
Equation (3). For 8 given baseline distribution &, the KuAP-G distribution can be -
wused. effectively for real data analysns We dlSCﬂSS some general mathemetical
properties of the new family. We c0n51der the meull as baseline for the KAP-G
family and generate a four-parameter KuAP-Weibull (KuAP-W) distribution, which

has several desirable properties.

Two real data sets have been analyzed for illustrative purposes. Other motivations for
the KuAP-W distribution are: (i) it contains some lifetime sub-miodels such as the
Weibull, Kumaraswamy Weibull by Cordeiro et gl. (2010) and exponentiated Weibuil
Mudbelkar et al (1995), among others; (ii} it is capable 6f moﬂeling hmnotonicaﬂy
decreasing, increasing, bathtub, upside down bathtub and reversed-J bazard rates; (iif)
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it can be viewed as a suitable model-for fitting skewed data which may not be ..
pfoperly fitted by other common distributions and can aiso be used in a variety of
problems in_different areas such hé' fm‘éncia[ indusfrial reliability and survival
analys;s and (iv) Two apphcatlons to real data prove empirically that it compares '

weil thh elght other competmg lifetime dxstnhutlons,

Thc rest of th1s paper is orgamzed ds follows in Scctmn 2, we dgﬁne the KuAP- G
distribution and some spec1al cases. are presented. In. Section 3, we study the new
KuAP-W distribution. Some of its structural properties including quantlle function,
moments, moment generating function, residual and reversed residual lifes and order
statistics are derived in Section 4. The maximum likelihood estimates (MLEs) of the
model parameter are obtained in Section 5. In Section 6, the analysis of two real data
sets have been presented to illustrate the potentiality of the new model. Finally, we

provide some conclusions in Section 7.

2. The KnAP-G family

The CDF of the KuAP-G family is obtained by replacing G (x) in Equation (3} by
H .. (x) of the APT class given by (1). We have

| ao-Tl b>0
F@)= 1- 1-—[ o if a,a,b>0a=#l ®

-0-GeyY i e=1
The KAP-G PDF can be expressed as

b=l
ablnfa) oty | 855 =1 " et ,
f&)=y a-1 Bl a-1 == if a,a,b>0,a#l ©)

7 abg(x)G(x)_""[l—G(x)"]”" if a=1
The quantile fanction (QF) of X, Q(p) = F~(p), can be obtained by inverting (5)

numerically and it takes the form

_. [ log 1-|-(tz—1.)[1-(1-:3)1""’]:""'I ,
Oxar(p) =G 1( [ o ] ja#

A random sample of size n from (5) can be obtained (for  # 1), based on the above
equation, as X; = Qgap(U), where U;~Uniform(0, 1), i = 1.
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The new KAP-G class contains some special cases which arc fisted in Table 1.

Tabic 1; Sub-families of the KAP-G family

o |al b | Reduced famﬁy - Authors

@ |a| 1 | Exponentiated alpha power-G (EAP-G) | New _ -

1|al b | Kumaraswamy-G (K-G) | Cordeiro and de Ca.stro (2011)
2 |11 1 Alpha power-G (AP-G) Mahdavi and Kundu (2015)

1 |a} 1 | Exponentiated-G (E-G) o Gupta et al. (1998) l

By using the generalized binomial expansion and the power series,

a-an= (Destiaso

k=0

we obtain a useful linear representation for the PDF (6) (for @ >0, @=1) as

(=0 b=IN( ey qalrD-t
fl) = Z(a Tl . )[G” g

Hence

[aG(x) - 1]“(“'1)-1 = glal+1}-1]6(x) Z(_l)J (a(r; +j1) - 1) @@
=0
o
- Z(_:[)J' (a(f +10- 1) e+ D=j-116G)
j=0 /
Then, we can write

S (DM b1\ fa(i+ 1) - '
f(x) = abln(e) g(x) Z -(a—fT)—zm( ; ) (E(L +JED 1) glatt+1-1l6G),
£.J=0

Using the power series
o = i(llwt)‘zt

e S 1 ’
the PDF of the KAP-G class reduces to

(=1)*/[a(i+ 1) = jI* +1)-1
f(x) =ab :Zo @ — 1)a(i+1)+1[ln(u)]—k-1 g(x)G{x)* ( ) (a(l ; )= )
Ji=
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Then, we have '
@)= Z )
where ., (x) = (K + 1) g(x)G(x) kis the exponentiated-G density with power

parameter and{k + 1) > 0 and

! l“(a)]kM[QO 4+ 1) J¥mb-Nyrai+1) -1
b= ab Z G+ Dl (e — DD ol i )

i.j=0

3. The KnAP-W distribution

The Weibull distribution is a popular life time distribution in reliability theory.
Numerous articles have been written demonstrating applications of the - Weibull

distribution in biological, medicel, engineering, meteorology etc. In the last few years,

several researchers have déveloped various éxtenéions and generalized forms of the

Weibull distribution to model various types of data. Among these, Mudholkar et at.

(1995) and Mudholkar et al. (1996) introduced and studied the exponentiated Weibull

distribution to analyze bathtub failure data by adding an extra shape parameter to the

Weibuil distribution. | '

Further, Xie and Lai (1995) proposed the additive Weibull d.istribﬁtion, the Weibull

extension distribution proposed by Xie et al. (2002), generalized modified Weibull
distribution introduced by Jalmar et al. (2008), Kumaraswamy Weibull distribution
proposed by Cordeiro et al, (2010), Kumaraswanry generalized gamma distribution
introduced by. de Castro et al. (2011), Kumaraswamy generalized half-normal
distribution proposed By Cordeiro et al. (2012), Kumaraswamy Pareto distribution
introduced by Bourgnignon et al. (2013), the. exponential-Weibull dis_tribution
proposed by Cordeiro et al. (2014), Nassar et al. (2017) introduced the . alpha
logarithmic transformed Weibull distribution and Cordeiro et al. (2017) introduced a
new three-parameter lifetime model called the Lindley Weibull distribution.

The random variable T is said to have a two-paraxnet& Weibull (W) distribution with
the scale patameter 4 >0 and shape paramefer B>0,if the CDF of £>0is

| F,,,(:;}z, p)=1—e-"”,a;ﬁ>o ')

and the corresponding PDF is

093



SrtA B =B 2, >0, ®
Inserting (7) in Equation (5). the CDF of the KAPW distribution is

b
lwe-ﬂxﬂ e
! o -1 ,
_1- 1_'_0—-—“1—_— zfa';tl
Flxe)=1 : _ ©

a
1- 1-(1_8—/1::”} T fa=1.

L

The PDF corresponding to {9} is

ol

abd fllne) g it et i . _ C("'-M ~1 ! .,
feo={ a1 0 [ a1 ] H o ” fa=l o

abAfe™" t-e Y- (- Y} if @=1
The sarvival function and the hazard rate function (HRF) of Xare, respectively, given
by

)
(S

S(x,0)= i

[I—(l—le"”)a]b ' ifa=1

abifloge g o 1 - e~ -1 !
xﬂ—l— = b hl I— - 1y %
Wxe)=y a-1 ¢ [ a-1 ] { a-1 ] ya=l

abaet (= ==Y T fa=i

Table 2 lists seventeen important special models of the new distribution.
Figures 1 and 2 display some plots of the KuAP-W density function for some selected
parameter values. Plots of the HRF of the KuAP-W distribution for some selected

parameter values are given in Figure 3.
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Figure 1: Plots of the PDF of the KAPW distribution for various values of parameters
Table 2; Sub-models of the KAPW distribution

a|a|lb}A|fB |Reducedmodel | Authors
ala|b|a|2|KAP-Rayleigh- |New
@ja|b|A|1]|KAP-exponential | New
lial|b| 2|8 |K-Weibull Cordeiro et al. (2010}
1{a|k{A|2|K-Rayleigh New
1|a|b|A}1|K-exponential New
1lajl|i]p|E-Weibuli Mudholkar et af (1995).
1]aji]|a|2|E-Rayleigh | New
1|a|1[4|1 |E-exponential Gupta and Kundu (2001).
ela|l|d]|p | EAP-Weibull New
a¢la|1]A|2|EAP-Rayleigh New
alal1]A]|1|EAP-exponential | New _ .
a|1{1|A]|p  AP-Weibull Nassar and Mead (2017).
a|1]1]|a|2|AP-Rayleigh Malik and Ahmad (2017)
a|li1]4|1 AP-exponentiat | Mahdavi and Kundu (2015)
1{1{1}A|f | Weibull Known
1{1|1§4}2|Rayleigh Known
1(21(21jA]1 | Exponential Known

o4y




(=S T 3 —
[4r] \ ¥ -/f
S ] -
AY 1 .
wy 1Y -
o T hY T
b ST
]
= 3 s = =126 fw0.76 ;1=mC75 a=3 b=3
o ' - = €05 AmS jimi A=2 b=0.5 .
v gm3.5 Bm0.5 r=1 Arm-l5 bm=a
+ miD.5 BmDE hAm1 B=0.5 b=i5
— e . 1] -- el BuO45 Le1:8—T1 b=3
_-E— - = 2 -——— om3 Gm1.5 Lm1 B=02 b=1.5
.. —
]
(=3 4 - .
~— 7 ] R
o e - .-
) £ T s e L e
w | . _——
=3 e s
- r
e
o | -
=1 -
7 ¥ T T T T T
¢ X} .5 1.0 1.5 20 2.5 3.0
x

w — g ’." P
- P —
1 -7 - .
! ;” .-".f
L I I - N Pty
. o - g
i v -
1 U _,_d"' g
o — AN e
s L Rl
- e L e .
= HA e e T T e
1, ,4_;.." .. e T
e I P e
o= b [
e
T | am4 BwiTB = Bme3E o= 135
3 = 0.005 BwDF5 hmwd S=2 BwdZ
-— . i mO.00S A5 A= amBB85 bed.T5
En . . Refe0d P=ZTS 2= mwlS b OS5
P L e = D.00S Bw1.5 =1 a=T b=t
3 e —— g=3 p=15im1 a=0.5 BotS
[ — T = PR M mrh mm amm em mmr s e e e
= - R
T T T T T T
a9 T =2 3 4 5
x

Figure 3:

4. Properties of KAPW 'd_iétributioh

4.1 Linear representation

Plots of the HRF of the KAPW distribution for various values of i)arametefs

The KuAP-W density fanction can be expressed as a linear mixture of W densities

(D ati+ 1) - I

flx)y=ab i

ijk=0

Kl ( = 1)+ 0+ [In(a)] %~

(Apxi-1e~4")
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kb1 ] -
e (TP
‘ { J
i, Ty . . AxP k .
Applying the binomial expansion to (1 —gmax ) , We can write

fx)

o Y e e () (D)),

k=0

Thien, we have
f(x) = Lm0 dm g1 (xi B, (m + 1)), (11)

where gpiq(x: £ (m+1)2) is the W PDF with shape parameter f and scale

parameter (m + 1)4, and dyy, is the constant term
_ ii (—1)#Fmabfa(i + 1) = j]* '(b—z) (et +=1) (k)
-  1yal (@)% \ [ ' f :
o s+ Do emimar=

Equation (11) shows that the KAPW pdf can be written as a linear mixture of W

densities. Then, several of its- properties can be obtained from those of the W

distribution.

Let ¥ be a random variable having the W distribution in (7). Hence, the rth ordinary

and'incomplctc moments of Yare, respectively, expressed as

Wy = AFC (%+ 1), Orp(8) = 1Py (;—5,+ 1 Arﬂ),

where the lower incomplete gamma function is defined by y(a, b) = _f'olj x%te~*dx,

4,2 Quantile Functlon
Using Equation (9), the KuAP-W distribution can be easily sunulated by

Cand
p L, {ln[a/(a —Di-(-U)*7" +1]}ﬂ,
A Inc
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wheret follows uniform’ (0,1) distribﬁ_tion. The p-th quantile function of KAPW

distribution is given by

Yp =__.iln{]n[a/(a“l)[]—(l—p)]/b]w" +1:|}ﬁ .

A ha

4.3 Moments :
The rth moment of X can be obtained from Equation (11) as

BT = i o [m + DATFT G+1)

m=0

The rth incomplete moment of X is given by.qo,.(t) = f; *" f(x)dx. It follows from
Equation (11) o

@r(t) = Z f X gmaa (X)d,
m=0
and then, we obtain

o) = Z dm + 1)) 3}'( +1,[(m+ l)Z]tB)

m=0

The first incomplete moment of X follows from the last equation by setting r =1 It
can be applied to obtain mean deviations, Bonferroni and Lorenz curves, mean
residual and waiting times and totality of deviations from the mean and median.

4.4 Moment generating function

‘We now provide the moment generating ﬁmctlon {(MGF) of the W model as derived
by Nadarajah et al, {2013). We can write the MGF of Y as

MY(L'I ﬁ, A= ﬁ;{f erxxﬁ";e'“pdx_
o -
By expanding e**andcalculating the integral, we have

My (6:,3) = Z (UL M) (ﬁ +1)

Using the Wright generalized hypergeometric function defined by
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- [g_l,g,_)._..,(z,,.ap) ] Z I T(% + Aym) o
(B1:B1)vn(BpBp) H I=1 r(ﬁ} + B_,m) ml’

Hence, we can write fhe-MGF of Yas
. | o
Mg = o [ ]
Co'mbinjng the above éxpfession and-Equation (11}, the MGF ofXcan be expressed as
My(tiB,0) = Y %o [ t/00m + 1218).
m=0 _

4.5 Residual and reversed residual Lifes

Forn=1,2,...and t > 0, the nth moment of the residual life of X is given by

-1 @
m,(t) = m]; (x —t)"dF(x).
Using Equation (11), we can write

EIR SR o R0 iy e
Malt) === ) ) Sy dllm + DA Fy (74 1.f(m+.1u.]zﬂ).

m=l =0
where o; = [(p + 1)/T\(p — i + 1) is the falling factorial,

The mean residual life (MRL) function of X follows by setting n = 1 in the last
equation, It represents the expected additional life length for & unit which is alive at
age x. The MRL is also known as the life expectancy at age x.

Forn = 1,2,.. and ¢ > 0, the nth moment of the reversed residual life of X is given
by
. -
Ml8) = 55 fﬂ (t - D)PdF ().
Then, we can write

= (n+ 1)[t"" |
Ma(t) = F@Z ) eyl DA by (5+ Lo+ 1P,

The mean inactivity time (MIT) of X follows by setting n = 1 in the above equation.
It represents the waiting time elapsed since the failure of an item or condition that this
failure had ocourred in (0, x). The MIT is also called the ‘mean reversed residual life

function,
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4.6 Order Astati.stics g ;
Let X ,X,,...X, be arandom sample of size n , and let Xndenote the ith order

statistic, then, the PDF ofXy.,, say [, (x) i given by
JialX) = f @IFEI-F@ET (12).
G- )'( ! |

Substituting (9) and (10) in (12) we can write 1., (x) as

‘ ol a-l
I (x)= ab B hlﬂ_ x ﬂ_]e_z,‘.pa|_,_,—a-vf' a~" -1 .
) Bl.n-i+]) o=l

, a A=+ . . b i =1
=" =t
y 1—[“ 1} 1-[1-—[—-—-—“ 1] 13)
a-1 a-1

Using the binomial exﬁamion, then [, (x) is given by

o o o (-0 ab(ina)" [a(j+1)-m] (i-1)(Ba+k-i+1)-1
ALIPY z AGn-i+Dsia-DV Lk }( J )

k=0 fms=0 in0
[a(1+l) 1}( )1 ﬁxﬁ‘-l -(hl)i.r"
m

The above equation can be rewritten as
finl®) = . diguna i, (1 DA
=0

where guea (i f {1+ 1)) s befors, is W density with parameters § and (1 + 14,

and

o= ab ]na' [a Jj+l m] {zl b{n+k—-i+1}-1 a(;-]—l)-l £ (=1
i Zzzﬂ(m i+D)sl(a— 1)""*"“)( j ][ m )(1} 1+

k=t jm=0 s=i
The gth moments of X;,, can be expressed as
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P,

E(xh) = ida [+ DT G+1)

1=0
5. Estimation

Let X,,X ;.. %, be a random sample from KAPW distribution then the
logarithm of the likelihood function (¢ ), becomes

b= n[kna+]nb+hul+lnﬂ+h1a]+nln[ J+(p' 121nxf AZx, —maZe-“’

izl T =

o ~ak =t Y
+Ha- 1)21;1( 1]+(b ~1)Sn1 [___1_1] (25)
iul =l - .
Therefore, to obtain the MLE’s of 2,0, 4, a_ﬁd £ wefind the first derilvatives
of the natural logarithm of the Iikelihood function with respect toa,b, 2,2 and fand

equating them to zero, we get the following five equations

. . . o
ey ef Y 2™ Ll : i
Hon & | A | C
==t b1 In — |,
dr a o { ] ( )g{ ] ( a-1 ] [ a-1 ] o
e @
8 n & g -1
=22 1— ,
%5t { a1 J

8 n nla-l-chal 1ie,'w+(a_1)zn:[(a_l)(l_g-uﬂ)a-;’f'ﬂ _(ax-e—k" ;1)}
i )

% =z a@-lhe o< (a-1) (@~

a ‘ N ' \ I
—a(b—l)i o+ 1| [@-n 0= @ - - 7 -1
e a-1 (rx-l)(ai"-M o) 5 ,

aet v
—“%—fo +lna2x'" -l +(ﬂ I}Z(_—Tg
1

imi i= i=l - J

Y ] 7 P ¥
ntag=" —1 [ & xfe™ e o™ -1
—afb-1 i 1-
' )g'{ -1 ]( 2 1 a-1




and

& 2w, =AY 5 inx, + ey Axfe ™ lnx,
a)B ﬂ i=l i=l

=]

" ]-e""ﬂ B —Ax
+(a-1)2[a Axle l_na]nx,.J

e
el I=e

’ o -1
-1

o g a""_dﬂxf e halnx, o=
—a(b-1)y. o = 1- —|

et -1

Then the maximum likelihood estimates of the parameters q,b,4,& and Scan be
obtained by solving the above system of equations. No explicit form for thesc estimates,
we use & numerical technique like Newton-Raphson method may be used to solve these

- non-linear equations.

For interval estimation and hypothesis tests on the model parameters, we require the

observed information matrix whose elements are available with the corresponding author.

6. Applications

In this section, we provide two applications to two real data sets to prove the
importance and flexibility of the KuAP-W distribution. The first data set refers to the
actual taxes data. The data represent the monthly actual taxes revemue (in 1000
million Egyptian pounds) in Egypt from January 2006 to November 2010, The data
are: 5.9,20.4, 14.9, 162, 17.2,7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1,6.7, 17,
8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10, 4.1,36, 8.5, 8, 9.2, 26.2, 21.9,16.7, 21.3, 354, 14.3,
8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 11.9, 7,8.6,12.5, 10.3, 11.2, G.1, 8.4, 11,
11,6, 119, 5.2, 6.8, 8.9, 7.1, 10.8. These data were analyzed by Nassar and Nada
(2012), o

The second data set represents 63 observations of the strengths of 1.5 ca glass fibres,
,Oliginélljr obtained by workers at the UK National Physical Laboratory. This data set
is obtained from Smith and Naylor {1987) and is has been analyzed by Afify ef al.
(2016a) for fitting the Weibull Fréchet distribution. The dats are: 0.55, 0.93,1.25,
1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2, 0.74, 1.04, 1.27, 1.35,
1.49,1.53,1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11,A1.28, 1.42, 1.5, 1.54, 1.6,
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1.62,1.66, 1.69,1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7,
1.77,1.84,0.84, 1.24, 1.3, 1.48, 1.51, 1.55,1.61, 1.63, 1.67, 1.7, 1.78, 1.89.

For both data sets, we compare the fits of the KAPW mode! with some compctitive
modcis, namely: generalized Burr X Weibull (GBXW) (Aldahlan et al., 2018),
exponentiate& Weibull (EW) (Mudholicr et al., 1996), odd log-logistic exponentiated
Weibnll (Afify et al,; 2018), alpha power Weibull (APW) (Nassar et al,, 2017),
fransmuted complementafy Weibull geometric (TCWG) (Afify et al., 2014), aipha
logaﬁthmic transformed W;:ibull (Nassar et al., 2018), Weibull Weibull (WW) -
(Aboue]ma_gd et al., 2017} and Weibul! distributions. : -

Table 3: MLEs (standard errors in parentheses), and the statistics —E(é), KS and
PV for the first data set '

Distribution Estimates 28 | ks | PV
KAPW 333173 | 08270 | 09761 | 16,5278 | 02607 | 187.887 | 0.0617 { 09779
(@B A0 b) | (17.699) | (04678) | (1.0422) | (31.148) | (0.2665)

GBXW 175749 | 258.722 | 5.8501 | 0.0264 188345 | 0.0631 | 09727
(@B ab) | (159.08) | (433.25) | (0.8959) | (0.0079) ' ‘

EW 3813.00 | 02172 | 4.2640 ' 188241 | 0.0640 | D.9686
(@670 (11683) | (0.1420) | (3.5513)

OLLEW 0.0721 | .0.1500 | 55155 | 7.0781 190.718 | 0.0727 | 09134
(@876 | (0.1505) | (0.1433) { (6.9616) | (9.9837)

APW 3432.25 | 0.8786 | 0.2811 |- 102.019 | 0.1055 | 0.5266
@84 (4219.6) | {0.0934) | (0.0792)

TCWG 02000 | 20175 | 0.6436 | 0.0538 105.706 | 0.1324 | 0.2518
@B A6 | (06072 | (©3280) | (02337 | (0.0009) ,

ALTW 04335 | 19431 | 0.0039 196466 | 0.1228 | 0.3353 |
@ B,1) £0.2708) | (0.1099) | (0.0014) ‘

WW 0.2636 | 77.5484 | 06699 | 0.0170 197.380 | 0.1432 | 0.1774
(@B.ab) | (49663) | (23.026) | (0.1279) | (0.0070)

W 1.8403 | 0.0653 197.290 | ¢.1431 | 0.1780
@A - | (017D | {0.0049) '

Tables 3 and 4 provide the MLEs of the model parameters, their corresponding
standard errors (SEs) and the values of —¢(d), ksand PV for both data sets,
respectively. The plots of the fitted KAPW PDF and other fitted densities, for the both

A



data sets, afe disp]ayed int Figurés 3 and -4', ‘fesp'ectiv'ely. They reveal that the KAPW
distribution provides the best fits and it can be considered very competitive model to

other distributions with positive support for the two data sets.

Table 4: MLLEs (standard eirors in pnrentheses), and the stat:stlcs —-f(é?), KS and
PV for the second data set . ’ :

Diswibution | Etimates 48 | ks | PV
KAPW | 892219 | 54350 | 01260 | 049% | 08040 | 1215 00575 | 055ei |
| @BA by | (26360) | (L5714) | 0.0816) | (0.235) osasoy| | T Al
GBXW 0.4623 | 13915 | 0.08%0 | 29125 14565 | 0.1406 | 0.1653
(@f.ab) | (©7270) | ©.8250) | (0.2522) | 2.7039)

EW | 06712 | 7284 | 00104 |- | [ 1467 | 01462 G580
(G (0.2209) | (1.4869) | (0.0210) ! c
OLLEW | 19919 | 8.7488 | 0.3021 | 16872 14028 | 0.1319 | 0.2225
@5,v.8) | (0297) | (3.9362) | (0.2664) | (0.7428) '

AW 10.8558 | 44836 | 0.1047 ' . 13.474 | 0.1224 | 0.3010
(@8,2) (12.717) | (0.2626) | (0.1082y I '

TCWG | G.069% | 32035 | -0.1380 | 04911 ¥, ¥+ | 0.0095 | 05598
(@p,45) | (0.1140) | (0.9403) | (0.9303) | (0.1952) ‘ .

ALTW | 22.5%% | 44786 | 03548 | 13575 | 0.1432 | 0.1507
@p.2) (42.543) | (0.7487) | (0.1913) o )

WW | 0.0278 | 3168 | 08617 | 1014 14413 | 0137 | 0.1852
(@pab) | (00724) | 2.7740) | (0.5162) | (0.6708) ] '

W 57807 | 06142 ) T 15.208 | 0.1522 [ 0.1078
®H | 50 | ©0139) |
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Figure 4: The estimated KuAP-W PDF and other estimated PDFs for the second data

set
7. Concluding remarks

In this article, we introduce the Kumaraswamy alpha power-G (KuAP-G) family of
distributions to extend the alpha power transform class defined by Mahdavi and
Kundu (2015) and several other families. Based on the KAP-G class, we construct 2

ey



new four-pﬁrameter model called the Kumaraswamy aipha power Weibull (KuAP-W)
distribution is proposed 1o serve as an alternative to many existing distributions.
Although, it may not be guaranteed that the proposed model always yields better fits
compared to existing models, it can serve in many cases as good alternative to them.
Some mathematical properties such as the quantile and gancratin'g 'fur-mtions, ordinary
and incomplete moments, residual and reversed residual lifes and order statistics are
obtained. The model parameters are estimated by the maximum likelihood estimation
method, Two applications to real data sets are presented to illustrate the flexibility of
the KuAP-W model as compared to other existing models, The numerical resilts
show thét the KuAP-W meodel is better as compared to several others for these two
data sets, We expect the utility of the newly proposed model in different fields
especially in lifetime and reliability when the hazard rate is decreasing, increasing,

bathtub or upside-down bathtub.
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