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o Abstract

In this paper, estimation of the parameters of inverse Wlebulf (IW)

: dlstrlbunon is conszdered usmg method of maxmrum Ilkehhood (ML) and

- method " of modlﬁed maximum hkehhood (MML) based on ranked set
sa.mplmg (RSS).
1. Introduction

Ranked set s'e.mplin.g.i's rec'ogniZed.as‘ a usefui sa:rﬁpl'in'g fechnique for'
improving the precision and i Increasing the e£ﬁc1ency of estlmatlon when
the vanable under cons:deratlon 1s expensxve to measure or d1ff' cuIt toi
| obtam but cheap and easy to rank Ranked set samplmg has been suggested
by Mcmtyre (1952) in relation to- estlmatmg pesture ylelds Takahas1 ‘and '
Waklmoto (1968) estabhshed the theory of RSS they showed that the

sample mean of RSS is an unbiased estxmator for the populatlon mean and

) ' is more  effi ment than the sample mean of simple random samphng (SRS)

The problems of  estimation based on RSS frorn some dlstnbutxon -are

dlSCUSS@d by several researchers for example Abu- Dayyeh et al (2013)
yay -



considered estimation of the shape and location parameters of the Pareto
distribution based on SRS and- RSS. Hussian (2014) discussed
Kumaraswamy distribution using SRS and RSS techniques based on
maximum [ikelihood and Bayesiaﬁ-estimation methods. Helu et al. (2010)
studied estimation of the bal‘a11lete1's of Weibull distribution using different
methods of estimation based on SRS, RSS and. modified RSS. Sadek\a:lnd
Alharbi (2014) studied the problem of Bayesian estimation of the .
parameters for Weibull distribution based on RSS. Al-Saleh et al. (2003b)
studied maximum likelihood estimation (MLE) énd modified maximum
likelihood estimation (MMLE) of the mean of exponential distribution
based on moving extreme raﬁked set sampling (MERSS) under both -

perfect and imperfect ranking,

Zheng aﬁd Al-Saieh (2002) showeﬁ thaf'the MMLE for the lo¢ation _
parameter was always more efficient than MLE uSing SRS. For the scale
parameter, the MMLE was at least as efficient as the MLE using SRS, _'
when the same sarhpie size was used. Balcﬁ et al. (2013) derived MMLESs
for the population mean and variance of normal disfcribution under RSS and
showed that they are gonsiderably more efficient than RSS estimators.
Also they suggested two new estimators for the'unknown..paramei:er&using

two modified RSS methods and showed that these methods make the

yas



variances of both MMLE and RSS estimators smaller. For some usual
scale distributions, Chen et al. (2014) obtained an explicit form of .the
MMLE and proved that the MMLE is -an unbiased estimator: under
MERSS. They also showed that the MMLE using MERSS is always more
efficient than the MLE using SRS, when the same sample size is.used.
Al-Saleh “and ' Al-Hadrami -(2003a) $tudied the ‘MMLE- of Ié_cation
parameter and they showed that MMLE using 'MERSS is always:more
efficient than MLE using SRS for location parameter of- normal
distribution.

The papef aims to obtain.t'he MLEs and- MMLEs for the scale and the
shape parameters of the IW distribution baséd on RSS. It is observed :th'at
the MLEs cannot be obtained in closed forms rso,'the MMLE is USéd. erlhe
rest of this paper is organized as foll(_)v:i's: Section 2, is about types of RSS.
The IW distribution is illustrated in Section 3. n Section 4, the MLEs are
obtained based on RSS. The MMLES based on RSS are derived in Section

5. Finally, areal data set is analyzed in Section 6 for illustrative purposes..

2. Ranked set sampling

According to RSS, we first select m’ elements denoted by Xis

G =12,om;f =1,2,..,m) from the population at random. These elements

vat



are then randomly splitted into m sets of m units each. On each set, we rank
the m units by judgment or a supporting variable according to the.
characteristic of interest. We select the element with the smallest ranking,

Xy for measurement from the first set. From the second set we select the
elemgnt with the second smallest ranking, x,,. We continue in this way
until we have ranked the elements in the mth set and selected the elemént
with thg largest ranking, x,,,,, @ in Figure 1. This complete procedure,
called a cycle which is repeated independently % times to obtain a ranked

set sample of size n =m#k (see Chen et al. (2004)).

Sample

I £ Euzy o F e X\

2 a2 Xayy e Topep X 3em}
m X il Xazy o X gmeny X m

~ Figure (1) Ranked set samﬁling

Marginally x,,, have the same distribution with pdf given by (see David

and Nagaraja (2003)).

1 i =i : : :
f,,,(x,-u-,;f?)=—(;~_ﬁ{’(’m[lv(x,.m;9)] T1=Fx, 0] F (x,30) 0 <x <0
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There are some methods of modified ranked set sampling, which are

explained as follows:

a- Ranked set sampling by choosing both diagonal elements
Suppose that, i samples of size m are taken, and every sample is ranked

in itself as in RSS design:

Sample .

l x'(” xl{?) e xi(m—l) x}(m) :
2 x 2(1) xl’(lj e xl(m-l)' X 2{m)
m Xy ¥y v Xy Fam)

Figure (2) R8S by choosing both diagonal elements

In this method, both diagonal elements are chosen as follows; the first and

the mth order statistics are taken from the first sample (x,;, and x,,, ).

From the second sample, the second and the .(m-l)th order _statiétics are

chosen ( x,,,and x,,_, ), and so "_Qn,,th'_en-, the. mth and the first order

statistics are selected from the mth sample x,,, and x . The joint pdf

of x,,, and x,, ., is given by (see David and Nagaraja (2003)).
m! : i -1 ) ot -24
Tl tso) = G -2 )G -_1)![F ] [F & mr0)=F 1)

i =l
x[]_F(xi[m—f-ﬂ))] S Y &

yan



b- Ranked set sampling by choosing extremes of the samples

Consider m samples of size m are selected and every sample is ranked

in itself as in RS.S design;

Sample
1_ ' xl(l) Xymy  on xl(m—l) . xl(m] )
2 Xy Xomy o Fam-n 2l
- A
m xm(i] xm(l) xm(m -1} xm(m)

Figure (3) RSS by choosing extremes of the samples
According to this met_hdd_, .the smallest and largest order statistics from
each sampie are s}glecteck which x,,, and x,,,, (¢ =1,2,...,m) are used as
the random sample, the jc;int pdf of x,.“,. and x,,,is gi\.fen by (see David

and Nagaraja (2003)).

Sa (J‘sur"s(m))=’”(”".‘1)[’T (210} F ("r(n))]m_zf ) ()
é- Moving extremés ranked set s_am'pling
The MERSS procedure is described as follows: first, choose m random
samples of size 1,2,...,m, réspectively. Second, identif‘y'thg maximum of
each sample by visual inspectic;n or. by some other relatively .in'e.xpensivc
method, without actualﬁeaémrement of the characteristic of interest, Third,
repeat the previous steps but for minimum. Finally, repeat the pre.vious

steps k times until the desired sample size, n= 2km is obtainc.d. The sample
Yay



of these units is called the MERSS (see Al-Saleh and Al-Hédrami
- (2003a)).

Suiapose that (%00% 20X, ) 8D (y,:,,y,:z,....._,y,:,,,), i=1,2,0m ,_be 2m
sets of random samplés,.th.ey are independent'an.d. with pdf 7 (x:6), cdf
F(x;0). C;)nsid'el‘ X, =max (x,, ,_x_i;:z,__...:.:;x,:,,,), x,, is the ith order statistic of -

ith random samiple; and. ., =min(y,,,¥,4.a¥1m)s ¥, 1S the first order

statistic of the 7th random sample, (; =1,2,...m ), then (x,,..% powmerserrr® 1y

- order statistics (maximum) ina éample of size i ﬁ'om ' f (x:0), the pdf of
x,, is (see David and Nﬁgaraja (2(.)0.3'))'. | S
i) =1 (P01 (56)
Also y,, has the same distribution as Ist order 'stétiétics (minimum) in a
sample of size / from "f(y;aj,.‘the pdfof y,, is- o
'f, s 0) =1 [1-F(y, ?é)jr-'lf o '?._;9)
The likelihood function based on MERSS of size 2m :.i.s

L@O-TT[F (i1 (N [1-F OO (i6)
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3. Invérse Weibuil

© The Weibull distribution is one of thermost common and great usefd'
models in life testing and reliability theory. However, it has been found
that the Weibull distribution does not provide a satisfactory parametric fit
for those lifetime distributions with non—_monotonéLfailure rate, such as t:he
unirhoda! failure raté functions. The density al;d the hazard function of the
IW distribution can be unimodal or deéx‘easing, based on the choice of the
shape }iafameter, and then the IT'W .di_stl;ibution_ 1s more appropriate model
than the Weibull distributibn. The TW distributic.)rﬁ_pfovic.ies a goqd fit to
.sevérai data such as the time:.to breakdown of an insulating fluid subjected -
to the action of.a constant tension. Extensive work ﬁas been done on the
IW distribution. The probability dénsity function (pdf) and cumulative

distribution function (cdf) of the IW distribution are, respectively, given by

£ OY=aBy ey > 00,850, O

and | |
Foy=e”, @)
| where « is the scale parameter and # is tﬁe shape parameter. Thé hazard

rate function of the I'W distribution is
. . -l
_‘h@)zaﬁy-(pu)(eay I’_]) E
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Many works have been suggested to estimate the unknown parameters of
the IW distribution, see for 'example, Keller and'Kamath_'_(_IQSZ),' Erto and’
Rapone (1984), Calabria and Pulcini { I-99'4),'Ma'.:?_:wadah '(2003).'and Nassar -

and Abo-Kasem (2017).

4 Maximum likelihood eStimatibn __b_aséd'bn ._..l‘f.'_;iked_set _
In ths section, the ML estimation method is used to estimate the IW
distribution paranﬁeters uSing'R3§ : ‘ S |

Consider y, ., %5000 Y o) be a RSS of size’ n from the IW dlStI'lbutIOI‘l :

with pdf (1) and cdf (2), then the log hkellhood ﬁmctlon can be wrltten as. g

nLia,fB)= nln(Ca,B) aZay"’—(ﬁ+l)21ny,m+2(n. x)in( '“a_"'“f’) (3

it
sl St e

. where :

nl

From (3), the Iikelihoodjquations can bé__'written as _fél_lbﬁls o

~8 "8 Ifl

alnL " oy
___Zyuﬁ +Z(n 1)[ -”-ﬂi'ij

J=|

. and

C o "
ay.l(i)lnyl[f)e :

- 8lnLl _n Ry} W’ |
. = +0:Z Iy -4 lﬂy,(,, Zlnyf(;) Z(" { 1 'a)'ﬂ{'l ]
—€ . -

op ﬁ - ial = > ‘
RS @
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It can be seen that the likelihood equations cannot be solved explicitly, so

the MLEs of « and ;5‘-, .Q.Elil_’-l. be obtained by using any numerical methods.

5 Modified maxlmum likelihood estimation based on

ranked set samplmg

In this 'sectlon‘, the‘::_MMLs of the unlmoWn parameters of the IW
distribution aré obtained:-ﬁ.éi'né RSS.

It is observed that from (4) the ML equation of 4 and ¢ cannot be
obtained in: exphclt form, thus the MMLEs which have closed form are

obtained. Let X -—lnY then X. follows the extreme value d1str1but10n

with pdf and cdf glven, respectwely, by

a

f(x}z..]—exp{(x —#]_exp(-’f -!l]}, —w<x <od, _ (5)
a . o .
and |

F(x)=1- exp{ exp[ ;’u)} - (6)
where p=-lna/f and o=1/F are the location and the scale parameters,

respectively. From (5) and (6) and using RSS the log-likelihood function is

given by

InL' (,u,o*)-—nlna+22,(,) Z(n i+’ ‘“‘+Z(1 l)ln( )

isl A=l

A



where

Xn—H

Z =
iy &

To obtain the MMLEs, we linearized the expression g,(z,,,)=¢""" and

LTy

< - in Taylor series around the points v, =In(-In(1-p,}) and

g;'(.zf[f)) = ]

_e"‘ﬂ

p, =i /n+1. Using only the first two terms, We get

gt(zf(f)) =4ay +ﬂ|rzi(f‘)

- and
gz(z.vu)) =, +ﬁ2121(r)
where
ooy =e"(l-p), ' B =e" |
and

and =05 i /621.=[e_q-0 .(]_e_v')(l-e:)}—em’ﬂ )
' (I—Ie""w)

Using these linear approximations, we can obtain the modified likelihood

a?.f = g4

I-e

equations as

a] Lﬂ ! n N ! i -
El;tz E—-Z-_"L;g(” —i -:-I)(Odu +ﬁuznu)_;§(z —1)(%, +ﬁ2,z,.{,-)),
and
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BinL TN R &,
LI ZZJ(i]+;Z=]:(”_T+])f1(1)(qr +Al‘z|'(i))—;;(r“])zi{i](%f_'-ﬂizm))

der o o5

The solutions of these equations are

Hupipgs =E +6F

and
- -H +\}H2+4ﬁJ S .-
T intt, RSS =_——.'5_____ ] -
n
where
[i(f -l)ﬁzixr(r]",z’(n —i 'I"l)ﬂh.x'.mi|
E‘=- i=| ) ,
[Z(f ~Df, =D (n=i +i)ﬁ=,}
i=l iml
. [n ._‘Z(n —i +Da, +i(,‘ _])azf}
F=t i=l f‘=1 . ’
[Z(f-l)ﬁzf -Z(n-m),@“}
ixl i=l
H =10 +Day +0 =Dy, (2,0, = 2
j=] . .
and -

i=l

7=t =i +DB, -G DBy 7y~ 2)

6. Numerical example
In this section, the real data set of Dumonceaux and Antle (1973) is

used to show the applicability of the proposed: estimators. The data set
At



represents the maximum flood levels of the Susquehenna - River at
Harrisburg, - Pennsylvenia over 20 four-year periods (1890-1969).. The
same data set was mentioned by Mgswadah {2003), and he illustrated the
| fits well for the IW distribution of the mentioned data set. He obtained the
MLE of o and g from the complete data sct as ¢=00119 and
- #=43138, Here, we choosg a random sample of size 15 by using SRS and
RSS, sampling was done with replacément. In RSS method, five matrices 3
x 3 are drawn and then applying the method presented in Figure 1. Table 1
displays the differeﬁt estimatés of the unknown parameters under SRS and
RSS as well as the corlresponding confidence intervals bounds. From table
1, it is noted that fof parameter a the MML method under SRS perform
better than other methods in terms of confidence i_nterval length, while for
parameter g the ML xﬁethod under RSS pérform better than other methods
in terrﬁs of confidence interval length (CL).

Table 1. The ML and MML estimates of ¢ and £, the lower and upper
confidence bounds and the corresponding 35% confidence intervals under SRS

and RSS for real data set.

Sampling | Parameter MLE LB uB CL | MMLE | LB UB CL
0.0G2 | -0001 | 0.005 ; 0.006 } 0.002 | G.001 | 0.004 | 0.002

@&
SRS Jij ssa1 | 4515 6767 | 2252 | s.635 | 4079 | o111 | 5032
@ 9035 | 0010 | 0,060 ] 0.050 | 0.036 | 0.030 | 0.044 | 0.014
RSS B 3351 | 2676 | 4.026 | 1350 | 3338 | 2782 | 4.170 | 1.388
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