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Abstract

This paper provides‘an extension to an optimal control problem of multi-item inventory model with
deteriorating items using the negative logarithm of deterioration and spoilage function as an
objective function that depending on the alternative quadratic exponential form. In this paper, the
different co-state values are used separately they have negative values along the optimal trajectory.
The effect of increasing and decreasing this value on the optimal solution s investigated. Also, the
 sensitivity analysis that reflects the effect of changes of the deterioration and spoilage parameters
values on the optimal solution is explained. Finally, we compared the obtained results with the
results that have been obtained when the co-state value is equal negative one.

Keywords: Co-state Variables, Sensitivity Analysis, Multi-item Inventory System, Demand Rates,
Deterioration, Spoilage, Pontryagin principle.
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i Introduction

An optimal control problem of multi-item inventory model has a wide importance in practice.
El-Sayed [1] has studied the effect of different types of demand rates on the objective function,
which refers to the negative value of logarithm of deterioration and spoilage function, using the
Pontryagin principle for the negative one value for the co-state variable.

In this paper we will extend this study using different values, less or more than negative one, for the
co-state variable 4, . The purpose of this study is to indicate whether the changes in the co-state
value affect the optimal solution or not, especially on the optimal production rates and on the
objective function values. As it is expected the optimal inventory levels may not be affected or
affected slightly as we shall see later.

-( )OI address: High Institute for Specific Studies, Department of Management Information Systems,
Waylet Al-Batran, Giza, Egypl.
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Also, we need to know the sensitivity analysis for changing the deterioration and spoilage
parameters, specially the effects on the optimal solulion.
Finally, to complete this study we must compare the obtained results with the results when the co-

state variable 4, equals -1,
Zhao and Prentice [4] presented the quadratic exponential form (QEF) for the two correlated
variables .Y .Y, as:

g s | I
S cindfix A By, +0.xx,;. (1
‘ Z EKP{UfXﬁSEIEJr(}'”x,xJ} IR " ?}

Ty
Elsayed [1] supposed that 6, represents yyu,, 6, represents yu,and 6, represents ¥, , Where
the spoilage parameters y,, v, and ,, depend on the control variables U yand Uy, w's >0,

Since ¢, 6, and 8, represent the deterioration parameters, 6 's > 0.
So, we can use the normalizing term, Z exp {c'w'i.\'_, +0,x, +9”x,x2}, in the function (1) to be
sy
rewritten in the exponential form [2) as shown below:
Sx,x)=exp {Q,x, +0,%, +6,3,5, — log{ 1 +y,u, +y,u, +o,r/,2u,u,)}. (2)
The negative logarithm of this function can be used as the objective function which is needed to be

minimum value,

This paper can be ordered as follow: section 2 presents the mathematical form for the optimal
control problem and the controlled systems, section 3 presents the numerical solution for the
controlled systems with different types of demand rates, section 4 presents the sensitivity analysis
for the deterioration and spoilage parameters, and finally section 5 gives some conclusions.

2. Mathematical Form
Let us define the following parameters, as used in El-sayed [1], which are used in the mathematical
formulation of the optimal control model:

X, (1) : The inventory levels at time 1.
U, (t) : The production rates at time .

T : The length of planning period.
X,g - The initial inventory levels.

a, : The deteriration coefficient due to self-contact of item x, .

a, : The deteriration coefficient of x, due to presence a unit of X, i#j=12.
D, (x;,%,,1) : The demand rates of (x,,x,).

¥, : The spoilage rate of of x,, > 0.

\ﬁ : The spoilage rate of of x,, y,> 0.
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' i, « The spoilage rate nf(:x,.x,}._ioiﬂlly, w,> 0
@

: The natural deterioration rate of x,, 6,> 0.

¢, : The natural deterioration rate of x,, ;> 0.

#,, : The natural deterioration rate of (x,,x, ), jointly, &,> 0.

As mentioned before, the negative logarithm of the function (2), which represents the deterioration
and spoilage function, is used as the objective function:

J=-Inf(x,,x,)==0x, =0, =\ v 1 log(l+yp, i, + Y ). (3)
So, the problem can be formulated as
Minimize {J =G, ~Opx, =0 x, +log(l-+yu, +yH, +w1,ulu3]}, (4)
subject to:
:5,=-x‘(9,+a,zxi+a,,xl)—Di +y, (5)
¥ =~x?(6':+a]|x2+rrz:,r3)—D,+n,, (6)
and
X =2x,0020, x,=x,()20, u=u()20, u,=u,(t)20, 0]
where,

tel, D=Dx,x,0)20, 6,6,6,>0 YWyl >0.
Using the Pontryagin principle, let us define /= X, and introduce the co-state variables 4y, 4
and A, corresponding to the state variables X ,, X, and X, respectively. From (4), (5) and (6), we
can write the Hamiltonian function as follows: . _
H=2%+Ak+4%, . (8)

Moreover, to obtain the. co-state equations and the Lagrange multipliers associated with the
constraints (5) and (6), we formulate the Lagrangian function as follows:

L= H+ i (0x, + g (0%, + (0w, + (O, )]
where, g, (£), sty (1), 45 (1), 12, (¢) are known as Lagrange multipliers. These Lagrange multipliers

satisfy the conditions:
020,020 4,00 20,0, (1) 20, px(0=0. pa,0=0. pu (=0, pu,H)=0.

(10)
From (9), we can easily obtain the co-state equations
i,.(;)=—~§x‘%, i=0,1,2, (1)
then,
@m:--ai:e. Ain= :”—I %(rp-%‘; (12)

Thie first equation of (12) shows that the co-state variable 4,(r) remains constant along the optimal
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trajectory, and the Pontryagin principle requires that this constant should be a negative value [ 3],
Here, we will use different values for this co-state variable A,

AW)=-10 or A@)=-2 or A()=-0.00l, (13)
Substituting from (4), (5), (6),(8) and (13) in (9). we can write the Hamiltonian function, L, in the
form [ when 4,(1)=~10):
L= 1 Gx, +6,x, +xx, ~log(l Y g g )]
+'Il[_xl(9! +ay,x, 'mu-‘]) D+ ”l]'l )":[_"'2(83 QTS "'azzxz)"Di +”2]' (14)

‘I'ﬂl.l’l +ﬂ].-'fz + LY +ﬂ4l-"1‘

From conditions (7) and (10), we get

(0= p(0) = ,00) = p, (1) =0. (15)
Substituting from (13) and (14) into (12) we get
; aD aD
A=A(GH100 408,420 )1 (G2 var,)-0 1085, (g
: aD aD
b= AR 100 a4 20 ) A 400 ) 0,108, (1)
with boundary conditions _
AT)#0, i=12. (18)

Where T'is the length of planning period which can be suggested.
To obtain the optimal production rates (control variables) U, i=1,2, we differentiate the Lagrange
function (14) with respect to u,u, respectively and putting it equal to zero, we get

a _ 100y, +p,1,) +4 =0,
T T

oL _ 10y, +y.1,)
i : +4,=0.
a“z HWF"l"'W!“:"'Wu"rul &
Then,
. = I |+W.,l;"2
l)e— = +0, 19
u (1) 3 0y, ) A (19)
" - | |'1'l?f|£l".
S 1L 0 20
{ A 100y, Figy) L 20)

Since, i and i, are goal levels of production rates at the end of the planning period, T. Then using
the equations (5), (6), (16) and (17) we get the controlled system of non-linear ordinary differential
equations:



3= -—.1:,({;?1 % +a,,x,) =D,y

x£,= —.rz(ﬂz X, +an)c1)—£)2 +1,

” 1)
h= (E{;""]OH “‘ir‘ﬁz”ll’ﬁ)"’l‘t("'«.r +ct!]x?)—9|~i09ﬂx1
A= (%?? +100, +ayx, +2a5,% )4 /T.,( '-i X, ) ~10(_-?|2x1J
We can construct this system when () =2 and ),J{r )=-0.001 respectively
LB (9 X, X |) D, +u, ‘
"'z:*xz(gz+anxz+“zzx1)“'Dz+“z
] 22)
. aD i, ’ (
ll:}ﬂ(gx'?'ml+a|z*"z+29||-"1)+’1:'('K"+an"'2)“81'mlzxz
aD oD
-lz lz( ; +291+a2lx!+2ﬂlle)+‘2‘|(5x_:+a1?x1)r€2“29n‘xl
and
%) ="x|(9|+axrrl+a||xl)'D|+”| l
X, = —.1’3(93 +az:x2+02;x1),"D1 +U,y
o (8)

aD,

is= ;(——+00019 +a}rx1+2anx)+ﬂq +anx) 6,-0.0010,%,

8
b= %(aDWOOUH} Fayx, +2a,x )*’(E}D_”lzx) ~6,-0.0016,x,

The optimal control variables can be constructed when A,(f)=-2 and Ao(t)=-0.001 respectively

as.
% .—_,1__.._“.””‘?
u, (1) ) 2(’!’0‘%2“;)' Z,{iﬂ, (24)
; '=-1___L‘r”1"! . "
N e TR (25)
and
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% :.1.._______!"‘"’!71;2 ]

u(r) i 0,001y, +yy)’ 420, (26)
: :l__l'Hl""'I!‘:I

)= 2 o0l py 20 27

This system can be used lo describe the time evolution of inventory levels and production rates. The
analytical solution of this svstem is verv difficult and then we can solve it numerically.

3 Numerical Solution
The solution of optimal control problem of this model will be carried out using Pontryagin
principle. The numerical solution is to be necessary when the analytical solution is absence for the

non-linear systems (21, 22 and 23),
In this solution we solve the non-linear ordinary differential equations using Runge-Kutta method,

using the initial and boundary values for x,(¢),x,(1).Z (f)and A,(¢). The numerical solution can be

explained by different types of demand as:
1, The demand rates are constant:

Dx,, %) =7,
2. The demand rates are linear functions of inventory levels and time:
Dix,x, )=y, +wx,.
3. The demand rates are logistic functions of inventory levels and time:
D(x,,x,,8) = 2x, (K, = x,).
4. The demand rates are periodic functions of time:
D(x,,x,,t) =1-b, cos(2).
where y,,w, &, and b,(i =1,2) are positive constants.
Table | presents the values of system parameters and the initial states which are used in the
numerical examples for four cases of demand rate functions as follows:

Table I. Values and initial stafes of system paramelers

i th b 0, O %, D 4 4 N
20 20 | 0.05 0.07 0.00 0.8 09 | 0.05 | 004 | 0.6
Lig ) L . i Ky Ky b b, r "
5 5 0.9 0.8 0.4 0.5 0.7 0.8 5 0.7

¥ W, Vi A(T) AT
0.05 ] 0.07 | 0.06 ] I

Hint: In the logistic function demand rates, we will use the next values
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i, i T 240 | 4(0)
200 200 ] 1 |
The reset of values remain without changes as the olher three cases of the demand rates (constant,

linear and periodic).

The next subscctions explain the controlled system for each case of the demand rates functions with

different co-state value A,(1) as shown below:

3 As 4lr)=-10

[ this subsection we will use different demand rates with Ag(t) =-10:

1. Constant Rates
We will present the model with demand function as constant rates, D(x;,%;,¢) =¥ Substituting in

the controlled system (21) by the constant demand rates, we have the controlled system:

e _Il(gl +apx, tax 1) ~ 1t

X, =_x:(9:+az|x1 +anxa)‘71 +ily

1= 4108, + 7, + 282, ) 4ty dxy = 6,~108%,

A= 2’1(]091 X, ¥ 2apx )+ aphx, — 0, =100,
Solving the controlled system (28) numerically, we get some results as displayed in Table 2.

2. Linear Rates
Also, we will present the model with demand function as linear rates, D(x,,%y,0) =1, + WX

Substituting in the controlled system (21) by the linear demand rates, we have the controlled
systenn:

x’l=—x1(w|+0,+u,?x2+al,x,)-y,+ul l

X =_x;(m1+02+a1,.rz+anx3)‘7: +ily
Vo iy AT

/11 = Al(ca, +106, +a,,x , + 20,1 }-q'au},zx SRR 106,,x,

A= A(o, +100; +ax, #2a,1,) +ayhx, ~0,-108,x,

ELY



Solving the controlled system (29) numerically, we get some results as displayed in Table 2.

3. Logistic Rates
We present the model with demand function as logistic rates; D(x,, x,,) = 2x, (K, = x;). Substituting

in the controlled system (21) by the logistic demand rates, we have the controlled system:

.|

Xy = ﬂx,(Z(x! -x )40 +a,x, +u,..\',) +U,

¥, = 2(2(.73 =X,) 6 ayx, +u_n.r!) +,
(30)

A= 31(2(.':, -2x,+a,x,) +106, +n'”.:r1)+1:1n;12x2 -6,-108,x,

A= ’71(2("’2 = 2x, +ayx,) +106, +f";rlJ‘i)""’:’lz'lr""l -0,-100,x,
Solving the controlled system (30) numerically, we get some results as displayed in Table 2.

4. Periodic Rates
Finally, we will present the model with demand function as periodic rates, D(x,,x,,t)=1-b,cos(t).

Substituting in the controlled system (21) by the periodic demand rates, we have the controlled
system:

Xy =—x,(€, +a,x, +a|,.t,)— 140, cos(t ) +4,

X, =‘”"'1(91 Tk, *au“-:)" | +6,co8(r) +4,
) (31)

i, = J.,(IGB, +a,%, +2&,,x,)+a2,).211 -6,-108,x,

’iz = '11(1092 tayx, + zaazxz) +apAx, =6, ~106,x,

Solving the controlled system (31) numerically, we get some results as displayed in Table 2.

Table 2. The optimal solution when Aj(t)=-10

Demand Rates b T [P A ) _ u/ (T) u,(T) J'(T)
Constant 6.79 3.07 5.43 2.06 74.87
Linear 4.70 3.68 391 2.89 88.35
Logistic 143.21 |31.83 |[-1207 |-2.07 2219
Periodic 6.60 3.10 5.23 2.09 76.78

As we see from Table 2, the otimal value of the objeclive function when A,(1) =-10 is achieved in

£t



the constant rate (74.87).
The logistic rate is unacceptable because the production rates in this case have negative values

which is not realistic. This is reflexed on the value of an objective function (-23.9).

31 As A(1)=-2
Also, in this subsection we use the previous demand rates with A,(/ ) e

[. Constant Rates
We will present the model with demand function as constant rates, D(x,,x,,)=7,. Substituting in

{he controlled system (22) by the constant demand rates, we have the controlled system:

X, :“xt(9|+a|zxz+allx|)“?’u +i,

X4 z('gz tax, +"zz’:z)‘?’r +1i,
2 (32)

A= ’ll(logi +apx, + 2'5’u"'|) +aydx, ~ 6 ~108,x,

A= ’1'1(1091 +aX) +2azzxz) +a,4x, =6, 100,
Solving the controlled system (32) numerically, we get some results which are displayed in Table 3.

2. Linear Rates

Also, we will present the model with demand function as linear rates, D(x,,x,,f) =7, + WX,
Substituting in the controlled system (22) by the linear demand rates, we have the controlled
system:

Ty= —x1(w, +8 +ax, tax |) — 7,

xll. = —xz(mz +93 +a,x, 'HIZJI!) ~h +1?2
! (33)

i, = A,(mr +106, +a,x, +2a,x, ) +ay A%, -6,-106,x,

A= ’J“;'("-"x +100; +ayx, +2a, ) +aphx, —6, =100,

Solving the controlled system (33) numerically, we wet the results displayed in Table 3.

3. Logistic Rates
We present the model with demand function as logistic rates, D(x,X,,t)=2x(x,=x,)-
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Substituting in the controlled system (22) by the logistic demand rates, we have the controlled
system:

Xy —,\',(2(.\‘, —x, )+ +a,y, +u”.\")+u1

¥, = -—;vcz(Z(,vr2 —x, )+ 0, +ayx, |'ﬁ3!.\'1) +,

(34)

A= 2, (20K, = 2, Fayx )+ 108,40, )+ Aox, 6, —100,x,

4= flz(Z{.J\’2 2%, 4y, )+ 108, 1, x 1) +a,Ax, —0,~100,x,
Solving the controlled system (30) numerically, we et the results are displayed _in Table 3.

4, Periodic Rates
Finally, we will present the model with demand function as periodic rates, D(x,,%,,f)=1-b, cos(¢).

Substituting in the controlled system (22) by the periodic demand rates, we have the controlled
system:
X, = ~x,(9, tapx, +a||"'1)" 14D, cos(t) +4,

¥= —ch(éiJ +a,x%, +anxz)— 14+b,cos(t) +1,
' (35)

s

4= '11(109| +apx, + zanxn) iy dyx y =0 ~108,%,

= ’11(109: HayX, + 2ax, ) +apdx, — 0, = 106,%

Solving the controlled system (35) numerically, we get the results can be displayed in Table 3.

Table 3. The optimal solution when A4,(f)=-2

Demand Rates | /(1) | x(T) | (D) w(@ | JT)
Constant 679  [3.07 |16.06 1086 | 14.97
Linear 4.1 3.68 | 1889 1151 | 17.67
Logistic 15713 [3165 |[-20726 [-48.15 |-47I

Periodic 666  [3.00 1575 1099 |15.36

As we see from Table 3. the otimal value of the objective function when Ay(t) = -2 is achieved in

the constant rate (14.97).
Also. The logistic rate is unacceptable because the production rates in this case are negative values

and this unacceptable, this is reflexed on the value of an objective function (-4.71).
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3.3 As A,()=~0.001
Finally, we use the previous demand rates with 4,(/ ) =-0.001:

1. Constant Rates
We will present the model with demand function us constant rates, [X(x;,x,,f)=y,. Substituting in

the controlled system (23) by the constant demand rates, we have the controlled system:

X, :_xl(gl +apX, +ﬂll’ﬂ)_ﬂ i)

X, = “'xz(gz +tayX, +‘7'1sz) =1y tily
by (36)

A :21(]09! +apx, + 20”1,) Ty dyx, ~6,-106,x,

iz = /12(]09} +ayx, + Zazzx!) +apdx, —6,-106,x, |
Solving the controlled system (36) numerically, we get the results displayed in Table 4.

2. Linear Rates

Also, we will present the model with demand function as linear rates, D(x,,x,,l)=y, + W,
Substituting in the controlled system (23) by the linear demand rates, we have the controlled
system:

X :_x|(w|+9|+aux1+a|rr|)'71 +u

X, = -xz(wz F0, 40X, +x )~ +idy
b (37)

]:1=A|(ﬁ"|'Hogl+“|zxz+2“1|x|)+azl’i'zxz'91“marxz

2’1 Y ’L.'(m: +106, +ayx +2a,.y .') +aphx, ~ 0, -108,x,
Solving the controlled system (37) numerically, we get the results displaved in Table 4.

3. Logistic Rates
We present the model with demand function as logistic rates, D(x,x,,!)=2x,(k;—x,).

Substituting in the controlled system (23) by the logistic demand rates, we have the controlled

system:
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X = —x,(2{!{, —x, )+ 0 tagx, ta,y ,)+1.7|

X= '"xz(z("'z =Xy) O Hayx, iy 2) iy
‘ (38)
ﬂ; = /1[(2(1(1 =2x,+a,x,)+106 +c.-,).\‘3)+ A, =0, -108,x,

4 2111(2{""2 =20y + ) 106, wayx, )+ gk, =0, =106,%,

Solving the controlled system (38) numerically, we et the results displayed in Table 4.

4. Periodic Rates
Finally, we will present the model with demand function as periodic rates, D(x,,x,,1)=1-}, cos(t).
Substituting in the controlled system (23) by the periodic demand rates, we have the controlled

system:

X, =~~x,(t9| +n|!x1+a"x,)—l+b| cos(t )+, ]

X,= —xz(ﬁl +ay, +a1,xz) ~1+b,cos(t)+1,
b, (39)

i‘:il(wg,+a,3xl+Za”xl)+anﬂ,1x1«-6'|—109nxl

A= ’11(1091 Ty "‘2“2:"‘2) +aAx, -6, ~100,x,
Solving the controlled system (39) numerically, we get the results displayed in Table 4.

Table 4. The optimal solution when A,(1) = -0.001

Demand Rates %@ | x5O L w() (') JT)
Constant 6.79 3.07 -1899.14 -1606.32 0.007
Linear 4,70 1.68 f]635‘02 -1481.15 0.009
Logistic 162.41 | 31.83 |-1244.57 -1244.58 -0.0
Periodic 6.66 3 -1899.17 -1606.44 0.008

As we see from Table 4, the optimal value of the objective function when A(t)=-0.001 is

achieved in the constant rate (0.007), but all rates are unacceptable because the production rates in
all cases are negative values and this unacceptable. So, we can conclude that the co-state value
Jy(t)=-0.001 is more effective on the product’ ., rates and then on the objective function, So, it is

better for co-state value A (1) to be less than or equal negative one.
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4 Sensitivity Analysis
In this section we study the effect of increasing and decreasing the deterioration and spoilage
parameters on the optimal solulion. So, we can sugpesl some values in each case for the co-state

value A4(r), and the reset parameters remain without changes.

4.1 The increasing case
[n this subsection, we will use the values in Table | without changes, but we change the values of

deterioration and spoilage parameters as shown in Tuble 5.

Table 5. The values of deterioration and spoilage parameters (Increasing Case)
6, b, b, ¥ ¥, ; ¥ 2.
0.10 |]0.12 0.11 0:10 0.12 0.11

Solving the controlled system (21) using the values in Tables | and S, when the co-state value is
A(t)=-10 , we obtain the results in Table 6.

Table 6. The optimal solution when A,(/)=~10

Demand Rates (T | 5T | w@) | wd) | JT)
Constant 6.59 3.13 2.81 119 .. 2935
Linear 4.65 3.68 2.17 0.14 54.49
Logistic 1554|313 -6.09 -1.53 -47.12
Periodic 646 [3.16 |2.72 1.21 32.88

As we see from T.;lbie 6, the otimal value of the objective function when 4,(f)=-10 is achieved in

the constant rate (29.35). The logistic rate is unacceptable because the production rates in this case
are negative values, this is reflexed on the value of an objective function (-47.12).

Also, solving the controlled system (22) using the values in Tables 1 and 5, when the co-state value
is Aj(t)=-2 , we obtain the results in Table 7.

Table 7. The optimal solution when A;J(t) =-2

Demand Rates 0 | 5@ | W@ [wu@ | JT)
Constant 659 |30 [897  [s64 587
Linear 4.65 3.68 1943 6.45 10.9
Logistic 157.25 |32.11 [-47.57 |-8.76 9.35
Periodic 646 |3.16 | 885 5.68 6.58
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As we see from Table 8, the otimal value of the objective function when 2y(f)=-2 is achieved in

the constant rate (5.87). The logistic rate is unacceptable because the production rates in this case
are negative values, this is reflexed on the value of an objective function (-9.35),

Also, solving the controlled system (23) using the values in Tables 1 and 5, when the co-state value
is 4,(r)=-0.001 , we obtain the results in Table &.

Table 8. The optimal solution when A(t) =-0.001

Demand Rates X@ [n | w@ | owm | Ja@)
Constant 659 |33 |-14659 |-1312.64 |0.003
Lincar 465|368 |-140011 |-12205 [ 0.005
Logistic 1554|3175 |-113097 |-1130.98 |00
Periodic 646|316 |-146572 |-1313.18 |0.003

As we see from Table 8, the otimal value of the objective function when A4(t) =-0.001 is achieved

in the constant and periodic rates (0.003) but all rates are unacceptable because the production rates
in all cases are negative values. :

From Tables 6,7 and 8 we can conclude that the effect of increasing the deterioation and spoilage
parameters have little effect on the inventory levels, but high effect on the production rates in all
cases. Also the value of the objective function is decreasing when the co-state value A,(t) is

increasing.

4.2 The decreasing case
In this subsection we will use the values in Table 1 without changes, but we change the
deterioration and spoilage parameters values as shown in Table 9.

Table 9. The values of deterioration and spoilage parameters (Decreasing Case)
B b, b ¥ ¥, ¥
0.01 ]0.03 0.02 0.0) 0.03 0.02

Solving the controlled system (21) using the values in Tables I and 9. when the co-state value is
A1) ==10 , we obtain the results in Table 10.

£0-



Table 10. The optimal sulution when Ay(¢)=-10

Demand Rates @) | (@ | W@ | u@ | JI'T)
Constant 6.96 3.03 18.77 5.1 92.719
Linear 4,74 3,68 12.26 8.07 88.5
Logistic 163.22 [31.8 -53.74 -5.1 -5.12
Periodic 6.83 3.04 . 16.5 6'_ 85.18

As we see from Table 11, the otimal value of the ubjective function when A,(1)=-10 is achieved

in the periodic rate (85.18). Also. The logistic rate is unacceptable because the production rates in
this case are negative values, this is reflexed on the value of an objec!ive function (-5.12).

Solving the controlled system (22) using the values in Tables 1 and 9, when the co-state value is
Ay(t)==2 , we obtain the results in Table I1.

Table 11. The optimal solution when 4,(1) = -2

Demand Rates XM [ 5@ | @) |usl)  [J'T)
Constant 6.97 3.01 40.15 38 4 16.92
Linear 4,74 3.68 84.43 2949 17.7
Logistic 160.81 | 31.8 118.09 - 14.75- -1.01
Periodic 6.83 3.04 38.17 44.13 17.04

As we see from Table 11, the otimal value of the objebtivc function wien Ay (f)=-2 is achieved in

the constant rate (16.92).
Also. The logistic rate is unacceptable because the production rates in this case are negative values,

this is reflexed on the value of an objective function (-1.01).

Solving the controlled system (23) using the values in Tables 1 and 9. “+hen the co-state value is
Ay(¢)=-0.001 , we obtain the results in Table 12.

"Table 12. The optimal solution when A,(f) = -0.001

Demand Rates (1) | uT | (@) 0@y | I'T)
Constant 697 [3.00 [-385242 [--n26 [0.008
Linear 474 [368 [-414681 |2 25 (0009
Logistic 159.85 |31.35 |-17454 -744.01 0.0
Periodic 683 [3.04 |-3854.57 [-2¢367  [0.008

£0)

As we see from Table 12, the otimal value of the objective furion when Z(t)=-0.001 is




achieved in the constant and periodic rates (0.008) but all rates e unacceptable because the

production rates in all cases are negative values.

From Tables 10,11 and 12, we can conclude that the effect of .
spoilage parameters also have little effect on the inventory levels,

production rates in all cases. Also the value of the objeclive functic:

siate value A,(f) is increasing, but the value of objective function

case.

Comparing the results that are obtained from using different valu.

reasing the deterioation and

hut have high effect on the

1 is decreasing when the co-
‘ncreasing in the decreasing

it A(t) (-10,-2 and 0.001)

with these results that obtained when 4 (1) =1, that arise in Table 1 s shown below:
Table 13. The optimal solution when /(" ~1
Demand Rates <M |50 [gm |«ay (IO
Constant N T R
Linear 470 |3.69 |3544 12,0 8.83
Logistic 161.50 |34.80 |196.14 |7 238
Periodic 666 (310 1728 13543 7.68

We can conclude that as co-state value A (r) is better when it is I

The effect is high on the production rates and then the objective
little effect on the inventory levels.

8 Conclusions

In this study, we discussed the optimal control problem using
function depending on the alternative quadratic exponential form. *
co-state variable A,(¢) which has a negative value along the optin:
of increasing and decreasing this value on the optimal solution. Al
analysis to study the effect of changing the values of deterioration
optimal solution. Also. we compared the obtained results v
when /(1) =~1 and conduct that the co-state value is more eflect
negative one. Finally, the logistic rate in all cases is unacceptabl.
are negative values and then the objective function is affected.

£0Y

- than or equal negative one.

“jon (cause increasing) and

deterioration and spoilage
.sed different values for the
‘ectory, and study the effect
wve explained the sensitivity
! spoilage parameters on the
the results that obtained
“en it is less than or equal

use of the production rates
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